The SunShot Program

The Dollar a Watt Team

Imagine a World...

What if we had subsidy-free solar electricity at an LCOE of 5-6 ¢/kWh???

- Scaling without Subsidies
- Jobs and Competitiveness
- National Energy Security
- Healthy Environment

Enabling this World

What is SunShot?

Price and date targets

- 5-6¢/kWh fully installed at the MW scale by 2020
- Unsubsidized grid parity in residential and commercial markets by 2020

Transformational technologies

- PV Modules
- BOS
- Power Electronics

SunShot enables unsubsidized deployment of solar energy

Goodrich, Margolis, et al NREL

SunShot enables unsubsidized deployment of solar energy

\$1/Watt 2030 Cumulative PV Capacity Map (375 GW total)

\$1/Watt 2050 Cumulative PV Capacity Map (610 GW total)

Goodrich NREL

Total PV Capacity (GW)
<1
1 - 3
3 - 5
5 - 8
8 - 12
12 - 17
> 17

Taking a Team Approach

Advisory Board : Bill Brinkman (OS); Arun Majumdar (ARPA-E); Cathy Zoi (EERE)

Core Funding Strategy

R,D & D Roadmaps : Guiding Technology Development and Deployment

- Roadmap for Module: Materials, manufacturing, integration, reliability testing
- Roadmap for Power Electronics: Component innovations, communication protocols
- Roadmap for Balance of System: Materials, Design, Automation
- Industry, National Labs and Academia deeply involved in creating and implementing road maps

Engaging the stakeholders

- Dollar a Watt Workshop, August 2010
- Solar Roundtable, Jan 13
- Soft BOS workshop Feb 9
- Power Electronics Workshop Feb 8
- Hard BOS workshop Feb 9
- Manufacturing/Demonstration workshop March
- CSP workshop : March 2
- This workshop
- Website, blogsite,...
- More to come ...

Algorithms: PV Module Technologies

Barriers based investment: CIGS Modules

Approach to 50c/W Modules: CIGS Modules

$$\frac{\$}{Watt}$$
 \propto $\frac{Manufacturing\ Cost}{Efficiency}$ $\eta \propto J_{SC} \cdot V_{OC} \cdot FF$

Drivers	Cost Reduction Potential	Technical Risk	Pathways
Materials cost and availability (Indium, selenium, cadmium)	High	Medium	Thinner layers or replacement with Earth abundant and benign materials (e.g., CZTS, ZnS,)
Transparent Conductors	High	Low	ITO alternative materials and/or deposition methodologies
Large scale spatial uniformity and improved throughput with same or lower cost of capital	High	Medium	Improved in-situ metrology , thermal control, and elimination of chemical bath CdS
Glass and/or Encapsulants	Medium	Medium	Flexible low-cost front and backsheets with low WVTR (i.e., ultrabarriers, glass replacement)
Operational costs of selenization ovens	Medium	Medium	Eliminate batch selenization, alternative deposition methodologies (e.g., atmospheric deposition).

Barriers based investments: CIGS Modules

$$\frac{\$}{Watt} \propto \frac{Manufacturing\ Cost}{Efficiency} \eta \propto J_{SC} \cdot V_{OC} \cdot FF$$

Action	Potential Current Increase (mA/cm²)	Technical Risk	Pathways
Larger band gap junction partner	2.5	Medium	Replace CdS (e.g. 2.5 eV) with wide bandgap emitter (i.e., ZnS (3.1 eV))
Improved TCO	1.5	Medium	Develop TCO with high conductivity, transparency, environmental stability (i.e., a-InZnO)
Reduce CdS window layer thickness	1.5	Medium	Develop 20 nm thick continuous CdS layer without shunting.
Minimize reflection off CIGS surface	1.5	Medium	Develop a suitable low cost anti- reflection coating
Improved monolithic integration	1	Low	Reduce line width of laser/mechanical scribing

Barriers based investments: CIGS Modules

$$\frac{\$}{\textit{Watt}} \sim \frac{\textit{Manufacturing Cost}}{\textit{Efficiency}} \eta \propto J_{\textit{SC}} \cdot V_{\textit{OC}} \cdot FF$$

Action	Potential Voltage Increase (V)	Technical Risk	Pathways
Increase the Ga/In ratio in CIGS by a factor of 2 to 3	0.1	Medium	Increase CIGS deposition temperature via higher temperature glass substrates or alternative stable substrates.
Improve the absorber carrier lifetime and concentration	0.05	Medium	Implement in-situ quality control at minimal additional cost

Barriers based investments: CIGS Modules

$$\frac{\$}{Watt}$$
 \propto $\frac{Manufacturing\ Cost}{Efficiency}$ $\eta \propto J_{SC} \cdot V_{OC} \cdot FF$

Action	Potential FF Increase	Technical Risk	Pathways
Reduce parasitic leakage current	0.10	Low	Improve the density, phase, and crystallinity of the absorber
Reduce contact resistance	0.07	Low	Improved TCO and contact grid combination

Balance of System

Power Electronics for Commercial Rooftop Solar

Goal: Module level MPPT (>98%)

Barrier: Cost & reliability

Approach: DC/DC or DC/AC module integrated

converters

Goal: Light weight, roof-top inverter 99%, 200-500kW, eliminates DC conduit and wiring

Barrier: High-frequency switches and magnetics AC switches (for current drive architectures)

Approach: Wide-bandgap switches with advanced magnetic materials

Actively Engaging the Stakeholders: Extracts from Power Electronics Workshop

Power Electronics for Utility Scale Solar

Goal: Consolidate the number of inverters e.g., 20 MW installation will have 20 x 1MW inverters

Barrier: Longer wiring, limited by loss

Goal: Improve power quality while delivering cost high frequency electronics - improved EMI, reduced harmonics

Barrier: - Low loss, high-voltage switches and magnetics - Utility 'ownership' of line frequency transformer

Approach: Wide-bandgap switches with advanced magnetic materials

Actively Engaging the Stakeholders:

Balance of Systems : A complex beast to tackle!!

	Today		2014		2017	
BOS/Installation	\$	1.48	\$	0.97	\$	0.40
Mounting and Racking Hardware	\$	0.25				
Wiring	\$	0.14				
Other	\$	0.17				
Permits	\$	0.01				
System Design, Management, Marketing	\$	0.15				
Installer Overhead and Other	\$	0.19				
Installation Labor	\$	0.38				

BOS is different for Utility vs. Commercial vs. Residential

Utility Scale BOS

- Opportunity for small improvements in a range of areas
- Three elements of the strategy:
 - 1. Design innovations
 - 2. Materials and Mechanics
 - 3. Installation approaches and automation

Automation

Plug and Play with BIPV

Wiring, Frameworks, Mechanics

PV BOS Hard Costs Workshop

- Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules (Cost Target <\$2/W)
 - Develop a business case for integrating PV into a roofing product with the potential for GW's of installations
 - Develop a partnership with a roofing company
 - Encourage the Integration of Power Electronics
 - Demonstrate a form factor and installation design that reduces the temperature of both the PV cell and the roof assembly
 - Develop a highly reliability product with lifetimes of 20 years or more
 - Demonstrate a form factor that can be quickly and easily installed.

Why SunShot?

- Global Competitiveness
 - Energy Security
 - Environmental Issues
 - Life without subsidies

Thank You

